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Abstract. The differential geometry of admissible wavefronts for N- body scattering is 
investigated for each term of the multiple scattering series and within angular sectors of 
uniform asymptotic behaviour. The differential equations are dimension independent .in 
form and are thus investigated in R,. A general theorem is proved stating that, if not 
spherical, the wavefront must be a (ruled) K = 0 surface tangent to a sphere around the 
origin. For n = 3  a rather simple geometrical description is given of the most general 
structure. 

1. Statement of the problem and discussion 

The purpose of this note is to bring out the relevance of some elementary concepts 
of differential geometry to the description of scattering in configuration space. More 
specifically, I shall address myself to the question of what wavefronts characterise the 
asymptotic behaviour of the scattered wave and how they arise. 

In the very familiar case of two-body scattering, the problem is reduced to the R 3  
relative coordinate space so that the incoming plane wave sees a potential centred 
around the origin, If the range of the force is strictly finite the potential has compact 
support and the problem is equivalent to the scalar Helmholtz equation for an acoustic 
wave off an obstacle of finite size. 

The usual ansatz is that the scattered wave behaves asymptotically as an outgoing 
spherical wave (which is in fact Sommerfeld's radiation condition). The sphericity of 
the wavefront can be traced back to the fact that the wave ultimately propagates in 
free space, so that a ray description of the progressing wavefront should be appropriate 
through the eikonal equation. 

The eikonal equation (with unit energy) 

Vf.Vf= 1 

forces the wavefronts f-'(c) to constitute a family of parallel surfaces (Jones 1964, 
Somigliana 1919). Such a family can be generated starting from any initial (smooth) 
surface by displacing each point along the outward normal by an equal amount. The 
radii of curvature of the initial surface increase linearly (with coefficient one) with 
such a displacement (Eisenhart 1947) so that any initial surface becomes asymptotically 
spherical, i.e. with asymptotically degenerate radii of curvature. (If the initial surface 
has zero Gaussian curvature, K = 0, the same holds for the whole family.) 
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Although the above points to the physical origin of the spherical symmetry of the 
asymptotic phase, it does not fully clarify the differential characterisation of the 
wavefront geometry. 

Take the N- body scattering problem with pairwise potentials of finite range that 
do not bind, and an incident plane wave ,y of momentum P' in the reduced R, (with 
n = 3N - 3 )  configuration space. The scattering wavefunction is the multidimensional 
Fourier transform 

T ( P ,  P ' ;  P'*+k)  
p= - i& 

in terms of the kernel T ( P ,  P'; z )  of the full T-matrix 

T ( z ) =  v -  V ( H - z ) - ' V  

The Hamiltonian 

H = K + C  V , , = K + V  
1 < I  

is the sum of the total kinetic energy K and the pair potentials V,, (Yakubovskii 1967). 
To simplify the notation let us restrict to a three-body system (i = 1, 2, 3). Let 

Greek letters label the pairs, e.g. a = 1 is the pair of particles 2 and 3. Resolve T ( z )  
into Faddeev's components 

where 

M,(z )  = T,(z ) -T , ( z ) (K - 2  - i&)- '  1 M ~ .  
5"a 

Here T, is the T-matrix with only pair 1y interacting and it carries a S( .  . .) for the 
third particle going through. 

Upon iteration, one generates the multiple scattering series for T ( z ) ,  and so for 
$(x, P ' ) ,  The starting terms for T ( z )  are 

where 1/(K - 2  - i& ) is the propagator for the intermediate state in between scatterings. 
Each term in the multiple scattering series for $(x, P')  is characterised by the 

overall energy pole, the propagators and the appropriate S(. . .) functions at each 
vertex. When due account is taken of the S( .  . .)'s, the term reduces to a multi- 
dimensional Fourier transform of a kernel having the energy pole and additional 
intermediate state singularities whose location is determined by the kinematics 
(Merkur'ev 1971). For its asymptotic behaviour as p = 1x1 + CO the residue at the 
energy pole has to be picked with a one-dimensional integration. An outer integration 
gets in general a leading O(1) term from a propagator singularity and an 
term by application of the stationary phase method. The two contributions are distinct 
and additive only within angular sectors in x-space of uniform asymptotic behaviour. 
Failure occurs over the matching regions analogous to the boundary of the geometrical 
shadow in optics (where the pole and the stationary phase point coalesce). 
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Away from the matching each contribution has a well defined asymptotic behaviour 

4 - (e"'"'/p" )(amplitude) 

with O<a s ; ( n  -1). 
The phase function f ( x )  is guaranteed to satisfy the eikonal equation and, by the 

very Fourier transform construction, to be homogeneous of degree one with the origin 
as the point of homogeneity. It then appears that the allowed geometries of the 
asymptotic wavefronts are strongly limited by the differential system 

Vf*Vf= 1 (1.1) 

(x a V i f  = f .  (1.2) 

That interesting geometries must actually occur is suggested by the following heuristic 
considerations. 

The potential in R, is E,,, V,, and each term has a translational symmetry in those 
coordinates on which it does not depend, along which it is 'flat'. The geometry of a 
multiply scattered term (note the very close relation with Keller's geometrical theory 
of diffraction) must be a result of the successive modification of the geometry of the 
progressing wavefront (Fock 1950). Thus, different scattered terms will have a different 
number of non-vanishing curvatures, different symmetries and a different associated 
expansion coefficient a. 

It is well known in geometry that the fall-off coefficient a is associated with how 
the area of the wavefront f - ' ( c )  increases in passing to a neighbouring (parallel) 
surface (Thorpe 1979); ( 2 a )  equals the rank of the second fundamental form of the 
wavefront set, i.e. the number of its non-vanishing curvatures. This is related to the 
fact that, proceeding in free space, such a 4 obeys 

( V 2 +  1)$ = 0 

so that the current 

j = Re(i$*V$) 

is conserved. 
Pushing the analysis a bit farther, one can see that a better understanding of 4 

comes from calculating the finite radii of principal curvature R, with i = 1 , 2 , ,  , . , 2a 
of f - ' ( c ) ;  $ can then be cast into the form 

4 -(e"'"'/nfZl ~ f " ) g ( ~ f )  

with an amplitude g that depends only on the wavefront normal (unit) vector Vf .  The 
amplitude is then constant along the (straight) integral lines of Vf, i.e. along the rays. 
In addition, if the directional derivative 

(i * V)Vf 

(1 * V ) g  = 0 

is zero along some tangent field i (direction of vanishing curvature), then also 

and g is constant along the integral lines of i. 

of the wavefunction. 
This picture affords, in a sense, a separation of geometrical and dynamical features 
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Although the statements we shall make are of a local character, the geometry of 
the surfaces allows these structures to be continued and interpreted in a larger domain. 

We shall prove that in any dimensionality a candidate wavefront is either a sphere 
or a surface of zero Gauss curvature (G = 0) enveloped around a sphere. Surfaces 
with G = 0 in R, are 'developable'; they have Co2"-many tangent planes with 

a <$(n - 1) 

or, equivalently, ~ 0 ~ ~ -  many independent normal vectors. They are always ruled 
surfaces. 

The only ruled surfaces in R 2  being the lines, R 2  admits only lines and circles. 
In  R 3  there is a richer structure. The most general case is locally like a cone 

enveloping the sphere but with the apex drifting along the generator. It can be 
generated as follows. Let a ruling slide over the unit sphere holding one of its points 
fixed (which point is held fixed is a function of time). The surface thus generated is 
taken as the level set of a function f at the value one. Propagate the function by the 
eikonal or the homogeneity condition. (The result is independent of that choice.) 

An analogous complete description in higher dimensionalities must take into 
account more possibilities, essentially because the surface has more curvatures which 
need not vary in the same linear manner along the ruling. Moreover it might happen 
that there is more than one ruling through each point. 

In the particularly interesting case of the three-body problem one can check that 
the troublesome single- and double-scattering terms are characterised by eikonal 
surfaces fitting exactly into our scheme. The geometry of their wavefronts plays an 
important role both in the calculation of interference fluxes and in the study of 
recurrence relations a la Sommerfeld-Luneburg (Keller er a1 1956) between successive 
coefficient amplitudes of the asymptotic expansion. In particular, interference fluxes 
in which an inner integration can be done by quadratures independently of the 
dynamics, i.e. of the r-matrices (Servadio 1981), find their most natural explanation 
in terms of rays emerging parallel from the scattering region. The summation is over 
rays that have had the same dynamical history, differing only for intercollision times. 
The two interfering wavefronts are recognised as being ruled surfaces tangent to each 
other along a ruling carrying the parallel emerging rays. 

In view of these applications it appears worthwhile to explain in detail how the 
differential system (1.1) and (1.2) constrains the geometry of the wavefront. Since in 
actual calculations it is necessary to parametrise a wavefront in order to calculate its 
curvatures and integrals over its set, after proving the main theorem in R, we shall 
restrict to R 3  and, as an exercise, analyse its structures in detail. 

2. Mathematical section 

2.1. The R ,  case 

We shall prove the following theorem. 

Theorem. If not a spherical cap, the surface f - ' ( c )  is a K = 0 surface. 

Proof. By taking V of (1.1) and using the symmetry 

a2f/ax, ax, = a'fjax, ax, 
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(which in a sense is the Frobenius integrability condition for reconstructing f-'(c) 
from its gradient vector field) one sees that 

(A q N = o  

fi =Vf. 

(x * V ) A  = 0. 

[ ( a x  + PA) * vyj = 0;  

[ ( w / f  -A)  ' vyj = 0. 

where 

Similarly, (1.2) readily gives 

Combining the two, for any a and /3 

so, if a = l/f and /3 = -1, 

Provided x A A # 0, this is a curvature equation since the vector (x/f -fi) lies on the 
tangent plane at x. The theorem is thus proved. 

It is well known that K = 0 surfaces are also ruled (an elementary proof can be 
given by mimicking the proof in R 3  by do Carmo (1976); alternatively, one can prove 
it directly from our hypothesis), the rulings being the (straight) integral lines of the 
directions of vanishing curvature. Then, if we call 

i = x / f - f i  

the ruling vector field, for any A we have 

f(x) =f(x + h i ) .  

The (n - l)-surfacef-'(c) has m"-'-many such rulings (generators) if non-overlap- 
ping rulings are considered distinct. Each ruling has a point of closest approach to 
the origin where is radial, the point being a distance 1x1 = c from the origin. If (2a )  
is the rank of the second fundamental form of the surface there is a (2a)-manifold 
of points of closest approach to the origin which is the 'tangency manifold' between 
the surface f - ' ( c )  and the sphere of radius c. There are m2"-many different normal 
vectors fi to our wavefront surface, so that the number ( 2 a )  of non-vanishing 
curvatures is connected with how many independent directions are present in the ray 
system associated with our eikonal surface. 

The importance of the 'tangency manifold' in actual calculations can be fully 
appreciated in the study of double-scattering waves in the three-body problem. One 
sees that it is exactly the matching region between two contributions, one of which 
is a ruled cone-like eikonal and the other a spherical eikonal (Servadio 1981). 

2.2. The R 3  case 

To see more easily some features of the wavefronts, let us restrict to R 3  and analyse 
its K = 0 surfaces. The 'tangency manifold' is in general a line called the directrix 
and the rulings are the  generators. Let the rulings be porametrised by the arc length 
A with A = O  on the directrix. Since the rulings are lines of principal curvature, so 
must be their orthogonal trajectories A = constant. Let these be the integral lines of 
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a C; vector field parametrised by the arc length p.  Call R (A ,  p )  the associated radius 
of curvature: 

(2.1) (C; * V ) f i  = (R(A, p) ) - lb .  

It is well known that 

a2R ( A ,  p ) / a A  = 0 

so that we can parametrise 

R(A, C L ) = A ( P ) [ ~ ( P ) + A I .  

X ( P ,  A 1 = a b )  + A b )  

Any x on f - ' ( c )  can be written as 

where a ( p )  takes to the directrix and A i ( p )  along the generator. Then, the curvature 
equation (2) requires the proportionality 

aalap = k ( p  )ai/ap 

axlap = aa/ap + A  ab/ap = (k ( p )  + A  )a i /ap  

and the coordinate velocity field along $ 

vanishes at A = k ( p ) .  
The motion of the generator can be thought of as having the point of curvilinear 

coordinates (A = -k(p) ,  p )  fixed. The surface is generated by sliding the ruling over 
the spherical surface and instantaneously having X A ( ~ )  = a  ( p )  - k ( p ) i ( p )  fixed, i.e. 
rotating around an axis through the xA point. The instantaneous centre of rotation 
moves with velocity 

hA/dW = -(dk/dp  CL 
and so it drifts along the generator. The vector fi is parallel to the axis of rotation 
and is found to be 

fi(p = a (p  , I C .  

(Obviously it  points, if drawn out of the origin, towards the appropriate point of the 
directrix.) Thus, the directrix is the image of the Gauss map. 

If k ( p )  = constant, then f - ' ( c )  is a cone of rotational symmetry. 
If k ( p )  = 00, the cone degenerates into a cylinder. 
If k ( p )  = 0, the cone flattens out into a plane. 

Figure 1. The R 3  case showing the A = 0 directrix. 
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